技術(shù) | 燃煤電廠SCR煙氣脫硝催化劑壽命預(yù)測研究
北極星電力網(wǎng)新聞中心 來源:《熱力發(fā)電》 作者:唐詩潔 陸強等 2019/4/2 11:36:35 我要投稿
所屬頻道: 火力發(fā)電 關(guān)鍵詞: 火電環(huán)保 燃煤電廠 火電
第一屆泛在電力物聯(lián)網(wǎng)研討會 5月23-24日 北京
2019中國綜合能源服務(wù)產(chǎn)業(yè)創(chuàng)新發(fā)展大會·4月18日-19日·無錫
第二屆煤改氣暨天然氣分布式論壇·5月9-11日·上海
北極星火力發(fā)電網(wǎng)訊:摘要:為保證燃煤電廠煙氣脫硝系統(tǒng)的安全、穩(wěn)定運行,需要制定科學(xué)合理的選擇性催化還原(SCR)催化劑壽命預(yù)測方案。SCR催化劑失效是多個物理和化學(xué)因素共同作用的結(jié)果,難以用傳統(tǒng)的物理模型或數(shù)學(xué)公式對其失活程度進(jìn)行預(yù)測。本研究針對電廠大數(shù)據(jù)特性,對原始數(shù)據(jù)進(jìn)行預(yù)處理,建立了曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4種預(yù)測模型。實例對比分析發(fā)現(xiàn):數(shù)據(jù)預(yù)處理可以提高預(yù)測精度;當(dāng)數(shù)據(jù)滿足等時距特性時,灰色神經(jīng)網(wǎng)絡(luò)優(yōu)化后的直接輸出模型預(yù)測精度較高;當(dāng)數(shù)據(jù)不滿足等時距特性時,使用BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測效果更好。
選擇性催化還原(SCR)法已成為國際上火電廠應(yīng)用最廣、最為成熟的NOx排放控制技術(shù)。催化劑是SCR脫硝工藝的核心,SCR脫硝催化劑(簡稱SCR催化劑)長期在高溫、復(fù)雜的煙氣環(huán)境中工作,會受到物理和化學(xué)因素的影響而逐漸失活。SCR催化劑服役時間即使用壽命決定著SCR脫硝系統(tǒng)的運行成本。因此,正確預(yù)估SCR催化劑的使用壽命并及時更換催化劑,對減小電廠運行成本和節(jié)約資源具有重要意義。
目前,國內(nèi)外學(xué)者已對SCR催化劑失活的過程和原因進(jìn)行了探索,并針對催化劑的失活原因建立了多種催化劑失活動力學(xué)模型。
Lei等人研究了SCR催化劑不同中毒過程中催化劑堿金屬中毒的失活速率。姜燁等研究了不同形態(tài)鉀和鉛導(dǎo)致SCR脫硝催化劑失活的機理,并在漸進(jìn)殼模型的基礎(chǔ)上建立了鉀和鉛中毒失活動力學(xué)方程。吳俊升等采用流化磨損測試方法分析研究了不同粒徑催化劑的磨損行為,建立了相應(yīng)的失活動力學(xué)模型。
孫克勤等研究了煤燃燒過程中砷的遷移規(guī)律以及SCR催化劑砷中毒對SCR脫硝系統(tǒng)影響的失活動力學(xué)。
Upadhyay等人以表面反應(yīng)動態(tài)模型為基礎(chǔ),引入時間因素對脫硝反應(yīng)動態(tài)過程進(jìn)行了實驗研究。此外,也有學(xué)者從催化劑整體失活的角度出發(fā),建立了不同的催化劑活性預(yù)測模型。對于早期的催化劑失活程度預(yù)測可以使用Gauss和Logistic回歸模型,根據(jù)實驗曲線擬合得到失活公式,但精度較差。
董長青等在SCR催化劑失活動力學(xué)模型的基礎(chǔ)上,分別從物理和數(shù)學(xué)角度進(jìn)行了修正。傅玉等按照數(shù)據(jù)是否滿足等時距要求,分別建立了灰色預(yù)測模型和多種曲線擬合模型,對催化劑的相對活性進(jìn)行預(yù)測。
SCR催化劑失活機理復(fù)雜,通過傳統(tǒng)的物理模型或建立數(shù)學(xué)公式對其活性進(jìn)行預(yù)測的難度較大且準(zhǔn)確度不高。此外,在電廠實際運行過程中,很難通過隨時停機來采集催化劑的活性數(shù)據(jù)和運行參數(shù);且隨著負(fù)荷的變化,流經(jīng)催化劑的煙氣參數(shù)也會時刻變化,SCR催化劑活性波動性較大。因此,本文以5個電廠的實際運行數(shù)據(jù)為例,將實際運行數(shù)據(jù)預(yù)處理后用于曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4類模型的SCR催化劑壽命預(yù)測模擬,探索預(yù)測SCR催化劑壽命的最佳方法。
1數(shù)據(jù)預(yù)處理
1.1催化劑活性計算
催化劑活性K可用于衡量其催化氨與氮氧化物反應(yīng)的綜合能力,主要由催化劑自身性能、煙氣條件、操作情況及機組運行狀態(tài)決定。準(zhǔn)確了解并計算催化劑活性是預(yù)測催化劑壽命的基礎(chǔ)。電廠實際運行條件下的催化劑活性K計算公式為
1.jpg
1.2運行數(shù)據(jù)預(yù)處理
本文以5個在役電廠的實際運行數(shù)據(jù)為基礎(chǔ),進(jìn)行數(shù)據(jù)預(yù)處理。以電廠1為例,該電廠給出了2016年1月10日到2017年1月3日期間的運行數(shù)據(jù),包括機組負(fù)荷、煙氣量、SCR脫硝反應(yīng)器入口和出口NOx質(zhì)量濃度等。通過式(1)得到不同運行時間對應(yīng)的SCR催化劑活性如圖1所示。
2.jpg
圖1電廠1催化劑活性變化示意
由圖1可以發(fā)現(xiàn),電廠的催化劑活性數(shù)據(jù)十分繁雜,難以觀察其變化規(guī)律。如果直接使用這些數(shù)據(jù)進(jìn)行模擬預(yù)測而不考慮數(shù)據(jù)的內(nèi)在特征,會導(dǎo)致最終預(yù)測結(jié)果誤差較大,因此需進(jìn)行相應(yīng)的數(shù)據(jù)預(yù)處理。
數(shù)據(jù)預(yù)處理步驟如下:
1)從每天不同時刻的K中選出最大值;
2)算出每5天K最大值的平均值;
3)找到5天中與K最大值的平均值最接近的實際數(shù)據(jù),并去掉明顯不符合催化劑活性變化規(guī)律的數(shù)據(jù),最后得到預(yù)測樣本。
對電廠1的數(shù)據(jù)進(jìn)行上述預(yù)處理后得到催化劑活性變化如圖2所示。
3.jpg
圖2電廠1預(yù)處理后催化劑活性變化示意
對比圖1、圖2可見,預(yù)處理后的數(shù)據(jù)更便于觀察,也更符合電廠SCR催化劑活性變化規(guī)律,可直接用于催化劑活性預(yù)測研究。因此,對電廠2—電廠5的數(shù)據(jù)也進(jìn)行同樣的預(yù)處理。
2預(yù)測模型
對于與SCR催化劑失活相關(guān)的多因素耦合、繁復(fù)的數(shù)據(jù)信息,從數(shù)據(jù)驅(qū)動的角度可以避免建立復(fù)雜物理模型。本文分別使用曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4類方法進(jìn)行預(yù)測,從而篩選出可以提高催化劑壽命預(yù)測準(zhǔn)確度的預(yù)測模型。
2.1曲線擬合
曲線擬合以離散的觀測數(shù)據(jù)點為基礎(chǔ),用連續(xù)曲線近似地擬合觀測數(shù)據(jù),并分析變量之間的關(guān)系。工程中常用的曲線擬合方法有多項式法、指數(shù)法和高斯擬合法,下面是幾種典型曲線擬合方法的趨勢模型(模型中an、bn、cn均為模型參數(shù))。
4.jpg
2.2灰色預(yù)測模型
灰色系統(tǒng)理論是我國學(xué)者鄧聚龍教授提出的針對不確定性問題的研究方法[17]。對于同時含有已知信息和未知不確定信息的灰色系統(tǒng),其數(shù)據(jù)可能是雜亂無章的,但是灰色預(yù)測可以通過鑒別各因素之間發(fā)展趨勢的相異程度,對原始數(shù)據(jù)進(jìn)行處理,建立微分方程尋找灰色系統(tǒng)數(shù)據(jù)變動的規(guī)律,從而預(yù)測系統(tǒng)未來的發(fā)展趨勢。灰色模型對實測數(shù)據(jù)沒有嚴(yán)格要求,所需數(shù)據(jù)量較少。本文采用單一變量GM(1,1)灰色預(yù)測模型,使用此模型的前提是建模序列必須滿足等時距的要求。
2.3BP神經(jīng)網(wǎng)絡(luò)
2.3.1簡介
BP(backpropagation)人工神經(jīng)網(wǎng)絡(luò)是模仿生物神經(jīng)系統(tǒng)功能和結(jié)構(gòu)發(fā)展起來的信息處理系統(tǒng)[20]。人工神經(jīng)網(wǎng)絡(luò)由大量簡單的處理單元以某種方式彼此互聯(lián)而成的復(fù)雜網(wǎng)絡(luò)系統(tǒng),具有學(xué)習(xí)、記憶、聯(lián)想、歸納和自適應(yīng)學(xué)習(xí)能力。在眾多人工神經(jīng)網(wǎng)絡(luò)模型中,按誤差逆?zhèn)鞑ニ惴ㄓ?xùn)練的BP神經(jīng)網(wǎng)絡(luò),因其運算能力強、建模過程簡單,已經(jīng)成為目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型。BP神經(jīng)網(wǎng)絡(luò)具備大規(guī)模并行處理數(shù)據(jù)的特點,可以存儲和學(xué)習(xí)大量輸入-輸出模式的映射關(guān)系,非常適合應(yīng)用于需要同時考慮諸多因素和條件的不精確或者模糊的信息處理問題。
BP神經(jīng)網(wǎng)絡(luò)通常由單層的輸入層、輸出層和層數(shù)不等的隱含層構(gòu)成,而每層都由若干個神經(jīng)元組成。圖3為典型多層前饋型BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。圖3中,x表示輸入數(shù)據(jù),a、c表示閾值,y表示網(wǎng)絡(luò)輸出結(jié)果,f表示激勵函數(shù)。
5.jpg
圖3BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
2.3.2原理
BP神經(jīng)網(wǎng)絡(luò)需要通過輸入和輸出樣本對網(wǎng)絡(luò)進(jìn)行訓(xùn)練,即通過學(xué)習(xí)和修正網(wǎng)絡(luò)的閾值和權(quán)值,并不斷重復(fù)該過程,最終得到符合條件的輸入或輸出。BP神經(jīng)網(wǎng)絡(luò)算法由信號的正向傳播(前向計算過程)和誤差的反向傳播兩個階段組成。兩個過程反復(fù)交替,不斷調(diào)整權(quán)值和閾值,直至網(wǎng)絡(luò)達(dá)到收斂為止,具體過程如下。
1)信號的正向傳播過程
輸入量由輸入層經(jīng)過隱含層逐層計算,并傳向網(wǎng)絡(luò)的輸出層。計算中每層的神經(jīng)元狀態(tài)只會影響下一層的神經(jīng)元狀態(tài)。網(wǎng)絡(luò)的權(quán)值在信號正向傳播過程中固定不變。如果輸出層不能得到符合其期望的輸出,則轉(zhuǎn)入誤差反向傳播過程。
2)誤差的反向傳播
由前向計算過程得出的網(wǎng)絡(luò)輸出與期望輸出之前的差值即為誤差。誤差信號由網(wǎng)絡(luò)的輸出端開始,沿網(wǎng)絡(luò)的連接路線返回并計算各權(quán)值和閾值對總誤差的影響。最后根據(jù)誤差梯度下降法對權(quán)值和閾值進(jìn)行調(diào)整。
2.3.3結(jié)構(gòu)設(shè)計
對于大多數(shù)復(fù)雜的數(shù)學(xué)問題,單隱含層BP神經(jīng)網(wǎng)絡(luò)即可滿足要求,本研究也采用圖3所示的輸入層-單隱含層-輸出層的3層BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。
1)確定輸入及輸出變量
電廠SCR催化劑在多因素耦合且復(fù)雜的煙氣環(huán)境中工作,煙氣量、噴氨量、運行時間、運行溫度及煤種等都會影響SCR催化劑的活性。為了建立簡潔、有效的BP神經(jīng)網(wǎng)絡(luò)模型,首先要對預(yù)處理后的數(shù)據(jù)進(jìn)行相關(guān)性分析,找到對SCR催化劑活性有顯著影響的參數(shù)作為BP神經(jīng)網(wǎng)絡(luò)的輸入變量。本文利用統(tǒng)計分析軟件SPSS進(jìn)行相關(guān)性分析。此外,由于各輸入量單位不同,需對輸入變量進(jìn)行歸一化處理,以均衡對BP神經(jīng)網(wǎng)絡(luò)的影響,降低誤差。本文BP神經(jīng)網(wǎng)絡(luò)輸出變量為SCR催化劑活性K。
2)確定隱含層神經(jīng)元個數(shù)
確定BP神經(jīng)網(wǎng)絡(luò)各層神經(jīng)元的數(shù)量是構(gòu)建BP神經(jīng)網(wǎng)絡(luò)的重要環(huán)節(jié)。隱含層神經(jīng)元數(shù)n需要先通過經(jīng)驗公式(5)確定大致范圍后,再對不同網(wǎng)絡(luò)結(jié)構(gòu)的訓(xùn)練結(jié)果進(jìn)行對比,選擇預(yù)測誤差最小時的隱含層神經(jīng)元個數(shù)。
6.jpg
3)確定訓(xùn)練和測試樣本
選擇一部分預(yù)處理后的數(shù)據(jù)作為訓(xùn)練樣本對網(wǎng)絡(luò)進(jìn)行訓(xùn)練,其余數(shù)據(jù)作為測試樣本。將測試樣本的輸入變量代入訓(xùn)練好的BP神經(jīng)網(wǎng)絡(luò)中,然后將SCR催化劑活性預(yù)測結(jié)果與真實值進(jìn)行對比,分析其誤差。
2.4灰色神經(jīng)網(wǎng)絡(luò)
灰色預(yù)測模型的對象系統(tǒng)中允許存在未知項,所需數(shù)據(jù)少,并且不要求數(shù)據(jù)具有一致性,但它缺乏自學(xué)習(xí)、自適應(yīng)能力,對非線性信息的處理能力較弱,而BP神經(jīng)網(wǎng)絡(luò)算法恰好可以彌補灰色預(yù)測模型的這些不足。本文將灰色預(yù)測模型與BP神經(jīng)網(wǎng)絡(luò)結(jié)合在一起,形成灰色神經(jīng)網(wǎng)絡(luò),尤其適合處理SCR催化劑失效這種多因素耦合、繁復(fù)的問題。按照神經(jīng)網(wǎng)絡(luò)的輸出數(shù)據(jù)類別,可將灰色神經(jīng)網(wǎng)絡(luò)模型分為殘差輸出和直接輸出2類。
2.4.1殘差模型
灰色神經(jīng)網(wǎng)絡(luò)中的殘差修正模型首先將原始數(shù)據(jù)通過灰色預(yù)測方法預(yù)測,隨后將灰色預(yù)測結(jié)果的殘差作為BP神經(jīng)網(wǎng)絡(luò)的輸入輸出,從而達(dá)到自身修正、降低誤差的目的。
2.4.2直接輸出模型
灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型首先將原始數(shù)據(jù)用灰色預(yù)測方法預(yù)測,隨后把灰色預(yù)測的結(jié)果與SCR催化劑服役時間同時作為BP神經(jīng)網(wǎng)絡(luò)的輸入,最后得到網(wǎng)絡(luò)輸出即SCR催化劑活性預(yù)測值。
3工程實例分析
3.1曲線擬合
隨著運行時間的延長,SCR催化劑活性會逐漸降低,因此使用曲線擬合法預(yù)測時,將時間作為自變量,SCR催化劑活性則為因變量。用MATLAB軟件中的cftool工具箱直接對樣本數(shù)據(jù)進(jìn)行曲線擬合。以電廠1為例,在進(jìn)行數(shù)據(jù)預(yù)處理后共得到51組數(shù)據(jù),取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),擬合得到SCR催化劑活性變化公式,然后將47—51組數(shù)據(jù)作為測試數(shù)據(jù),代入式(1)得到SCR催化劑活性擬合值,并與SCR催化劑活性真實值進(jìn)行對比,結(jié)果見表1、表2
7.jpg
3.2灰色預(yù)測
預(yù)處理后的電廠1數(shù)據(jù)滿足等時距特性,此時可以使用GM(1,1)模型進(jìn)行預(yù)測,取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),結(jié)果見表3。由表3預(yù)測結(jié)果顯示,曲線擬合和灰色預(yù)測模型的預(yù)測精度較低,平均誤差高達(dá)39.1183%。因此,使用單一的曲線擬合或灰色預(yù)測模型往往無法反映催化劑活性與各影響因素間復(fù)雜的非線性關(guān)系。
8.jpg
3.3BP神經(jīng)網(wǎng)絡(luò)
以電廠1為例,經(jīng)過SPSS軟件分析可知,機組負(fù)荷、脫硝效率、煙溫、煙氣量、時間、FGD(煙氣脫硫)出口NOx質(zhì)量濃度、噴氨量、煤中硫、砷質(zhì)量濃度都與SCR催化劑活性顯著相關(guān),因此將這些影響因素作為BP神經(jīng)網(wǎng)絡(luò)的輸入并進(jìn)行歸一化處理,SCR催化劑活性作為BP神經(jīng)網(wǎng)絡(luò)的輸出。
經(jīng)過計算比較后發(fā)現(xiàn),當(dāng)BP神經(jīng)網(wǎng)絡(luò)中隱含層神經(jīng)元為4時預(yù)測誤差最小,因此BP神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)為9-4-1(輸入層神經(jīng)元數(shù)-隱含層神經(jīng)元數(shù)-輸出層神經(jīng)元數(shù))。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),BP神經(jīng)網(wǎng)絡(luò)的預(yù)測結(jié)果與誤差見表4,其平均誤差為17.1534%。
9.jpg
3.4灰色神經(jīng)網(wǎng)絡(luò)
3.4.1殘差模型
經(jīng)過計算比較后發(fā)現(xiàn),當(dāng)灰色神經(jīng)網(wǎng)絡(luò)殘差模型拓?fù)浣Y(jié)構(gòu)為3-6-1時預(yù)測誤差最小。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),灰色神經(jīng)網(wǎng)絡(luò)殘差模型3-6-1結(jié)構(gòu)SCR催化劑活性預(yù)測結(jié)果與誤差見表5,其平均誤差為30.3738%。
10.jpg
3.4.2直接輸出模型
計算比較后發(fā)現(xiàn)當(dāng)灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型拓?fù)浣Y(jié)構(gòu)為2-5-1時誤差最小。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型2-5-1結(jié)構(gòu)預(yù)測結(jié)果與誤差見表6,其平均誤差為32.6349%。
11.jpg
為了進(jìn)一步降低誤差,將SCR催化劑活性影響因素也作為灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型的輸入變量對模型進(jìn)行優(yōu)化。即輸入變量包括灰色預(yù)測殘差和機組負(fù)荷、脫硝效率、煙溫、煙氣量、時間、FGD出口NOx質(zhì)量濃度、噴氨量、煤中硫質(zhì)量濃度、砷質(zhì)量濃度。經(jīng)過計算比較后發(fā)現(xiàn)當(dāng)灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型拓?fù)浣Y(jié)構(gòu)為10-2-1時誤差最小。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),預(yù)測結(jié)果與誤差見表7,其平均誤差為15.3916%。
12.jpg
3.5不同預(yù)測方法分析比較
上述預(yù)測模型計算結(jié)果見表8,對比可知灰色神經(jīng)網(wǎng)絡(luò)中優(yōu)化后的直接輸出模型預(yù)測誤差最小。為了進(jìn)一步驗證該結(jié)論,本文對在役電廠2、3、4、5的數(shù)據(jù)進(jìn)行預(yù)處理后用同樣的方法進(jìn)行預(yù)測,比較其預(yù)測誤差,結(jié)果見表9。分析表9發(fā)現(xiàn),灰色神經(jīng)網(wǎng)絡(luò)中優(yōu)化后直接輸出模型的SCR催化劑活性誤差最小。因此,在燃煤電廠實際運行過程中,當(dāng)數(shù)據(jù)滿足等時距特性時,可將灰色神經(jīng)網(wǎng)絡(luò)中的直接輸出模型(優(yōu)化后)作為SCR催化劑的壽命預(yù)測模型。
13.jpg
3.6預(yù)測方法優(yōu)化
在采用上述幾種同樣的模型進(jìn)行SCR催化劑活性預(yù)測時,電廠1的預(yù)測誤差最大。為了降低其預(yù)測誤差,將數(shù)據(jù)預(yù)處理改為由煙氣量作為標(biāo)準(zhǔn)對數(shù)據(jù)進(jìn)行篩選的方法。電廠1的原始數(shù)據(jù)中煙氣量變化范圍為527.8~1564.5km3/h(標(biāo)準(zhǔn)狀態(tài),下同),以煙氣量在1000~1021km3/h范圍內(nèi)為標(biāo)準(zhǔn),篩選后共得到70組數(shù)據(jù)。這些數(shù)據(jù)樣本不再具有等時距特性,不滿足灰色神經(jīng)網(wǎng)絡(luò)預(yù)測模型的使用條件,故使用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行預(yù)測。將1—65組數(shù)據(jù)作為訓(xùn)練樣本,66—70組作為預(yù)測樣本,BP神經(jīng)網(wǎng)絡(luò)SCR催化劑活性預(yù)測結(jié)果與誤差見表10。
14.jpg
比較表8和表10,以煙氣量為標(biāo)準(zhǔn)進(jìn)行篩選后使用BP神經(jīng)網(wǎng)絡(luò)預(yù)測的誤差顯著降低,改進(jìn)后的平均誤差僅為2.1819%。
4結(jié)論
1)針對燃煤電廠實際運行數(shù)據(jù)十分繁雜的特點,首先對數(shù)據(jù)進(jìn)行預(yù)處理,然后使用曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4種模型進(jìn)行SCR催化劑活性預(yù)測。比較發(fā)現(xiàn),當(dāng)數(shù)據(jù)滿足等時距特性時,灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型(優(yōu)化后)的預(yù)測誤差最小,準(zhǔn)確度更高。
2)對于煙氣參數(shù)尤其是煙氣量波動較大的在役電廠,先以煙氣量為標(biāo)準(zhǔn)對數(shù)據(jù)進(jìn)行篩選,再使用BP神經(jīng)網(wǎng)絡(luò)預(yù)測方法,這樣可進(jìn)一步降低SCR催化劑活性預(yù)測誤差,提高預(yù)測精度。